Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080220

RESUMO

Opuntia ficus-indica (OFI) is a cactus that is widely cultivated in the Kingdom of Saudi Arabia especially in the Taif region due to its favorable weather for growing, and it has benefits as a food and traditional medicine. The aim of the current study was to chemically characterize Opuntia ficus-indica seed oil from Taif, Kingdom of Saudi Arabia, using GC-MS and HPLC analysis and evaluate its antioxidant, antiviral, antifungal, antibacterial and anticancer activities. Linolenic acid was the dominating fatty acid in OFI oil, followed by oleic acid, linoleic acid, palmitic acid and stearic acid. Total tocopherol (α-, ß-, Ɣ-tocopherol) was found to be 24.02 µg/mL. Campesterol was the main phytosterol, followed by γ- & ß -sitosterol, and Stigmasterol. The phenolic components scored 30.5 mg gallic acid equivalent per ml of oil with 89.2% antioxidant activity (% DPPH radical inhibition) at 200 µL/mL of OFI oil. OFI oil showed an inhibition efficacy against microbial strains especially Saccharomyces cervisiae with a diameter (28.3 ± 0.4), MBC (15 µg/mL) and MIC bacteriostatic (10 µg/mL). While OFI oil had no effect against Aspergillus niger, OFI oil showed weak inhibitory activity against A-2780 (Ovarian carcinoma) cell line, although it showed significant inhibitory activity against PC-3 (Prostate carcinoma) cell line. OFI oil exhibited an antiviral effect (22.67 ± 2.79%) at 300 µg/mL of Oil against herpes simplex type 2 (HSV-2) virus. The bioactive compounds of OFI oil, as well as its main biological activities, make it a promising candidate for the non-communicable disease management.


Assuntos
Opuntia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Opuntia/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia
2.
Front Microbiol ; 13: 803688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547125

RESUMO

The metabolites of lactic acid bacteria (LAB) and bifidobacteria (Bb) have recently received a lot of attention due to their ability to protect interactions in blood and tissues, as well as their biodegradability and biocompatibility in human tissue. Exopolysaccharides (EPS) derived from bacteria have a long history of use in therapeutic and other industrial applications with no adverse effects. In this regard, EPSs were isolated and characterized from LAB and Bb culture supernatants to determine their antioxidant, antitumor, and periodontal regeneration properties. The antioxidant capacity of the EPSs varied with concentration (0.625-20 mg/ml). The highest antioxidant activity was found in LAB: Streptococcus thermophiles DSM 24731-EPS1, Lactobacillus delbrueckii ssp. bulgaricus DSM 20081T-EPS5, Limosilactobacillus fermentum DSM 20049-EPS6, and Bb; Bifidobacterium longum ssp. longum DSM 200707-EPS10. Human breast cancer cells (MCF7), human colon cancer cells (CaCo2), human liver cancer cells (HepG2), and human embryonic kidney 293 (HEK 293) cells were used as controls to assess the antitumor properties of the selected EPSs. According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, EPS5 had the highest cytotoxicity against MCF7, CaCo2, and HepG2, with IC50 values of 7.91, 10.69, and 9.12 mg/ml, respectively. Lactate dehydrogenase (LDH) activity was significantly higher in cell lines treated with EPS5-IC50 values compared to other EPSs-IC50 values (p < 0.05). Real time (RT)-PCR results showed that EPS5 treatment increased Bax, Caspase 8, Caspase 3, and p53 gene expression. The expression of the BCL2, MCL1, and Vimentin genes, on the other hand, was reduced. The MTT test was used to examine the effect of EPS5 on the viability of human periodontal ligament fibroblast cells (hPDLFCs), and it was discovered that EPS5 increased hPDLFC viability. According to high-performance liquid chromatography (HPLC) analysis, galactose made up 12.5% of EPS5. The findings of this study pave the way for the use of EPS, which hold great promise for a variety of therapeutic purposes such as antioxidant, antitumor, and periodontal regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...